Funktion x/||x|| stetig < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
habe folgendes Problem. In einem Beweis aus einem Buch taucht eine Funktion t(x) auf, in der der Ausdruck x-y/||x-y|| vorkommt. Der Autor sagt dann die Funktion t ist stetig in y. Also muss auch dieser Ausdruck stetig sein in y oder zumindest beschränkt sein (die Funktion ist bisschen unschön, aber es würde für die Stetigkeit reichen, dass der Ausdruck beschränkt ist). x und y sind Elemente aus einem Banachraum mit der Norm || . ||.
Kann man die Stetigkeit/Beschränktheit irgendwie zeigen? Meine einzige Idee wäre es das zu begründen mit jede lineare Abbildung von endl-dim. normierten Räumen ist Lipschitz-stetig.
Vielen Dank für Eure Hilfe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:01 Do 19.03.2009 | Autor: | pelzig |
> habe folgendes Problem. In einem Beweis aus einem Buch
> taucht eine Funktion t(x) auf, in der der Ausdruck
> x-y/||x-y|| vorkommt. Der Autor sagt dann die Funktion t
> ist stetig in y. Also muss auch dieser Ausdruck stetig sein
> in y oder zumindest beschränkt sein.
Nur so nebenbei, was heißt eigentlich "stetig in y"? Heißt das, dass für alle x die Abbildung [mm] $\Phi_x:y\mapsto\frac{x-y}{\|x-y\|}$ [/mm] in jedem Punkt [mm] y\ne [/mm] x stetig bzgl. [mm] $\|\cdot\|$ [/mm] sein soll? Das gilt auf jeden Fall, denn:
Die Vektoraddition, die Skalarmultiplikation und die Norm sind nach Definition der Norm stetig bzgl. [mm] $\|\cdot\|$. [/mm] Damit sind die Abbildungen [mm] $\phi_1:y\mapsto [/mm] x-y$ und [mm] $\phi_2:y\mapsto \|x-y\|$ [/mm] stetig für alle x sowie [mm] $\phi_3=1/\phi_2$ [/mm] stetig für alle [mm] $x\ne [/mm] y$. Also ist auch [mm] $\Phi_x=\phi_3\cdot \phi_1$ [/mm] stetig. (Kann sein dass ich irgendwas übersehen habe, aber du siehst wie du rangehen kannst).
Naja, und beschränkt ist der Ausdruck ja allemal, denn [mm] $\left\|\frac{x-y}{\|x-y\|}\right\|=1$.
[/mm]
Gruß, Robert
|
|
|
|
|
Danke,
war alles bisschen komisch formuliert. Meine Frage läuft darauf hinaus was man über den Grenzwert [mm] \limes_{x\rightarrow y} \bruch{x-y}{\parallel x-y\parallel} [/mm] sagen kann.
Wie gesagt, bei meinem Problem kam eine Funktion t(x) für alle [mm] x\not=y [/mm] und t(y)=0 vor, in der obiger Ausdruck auftauchte. Jetzt möchte man zeigen, dass t stetig in y ist. Es reicht dann, dass der Grenzwert [mm] \limes_{x\rightarrow y} \bruch{x-y}{\parallel x-y\parallel} [/mm] existiert. Kann man das annehmen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:58 Do 19.03.2009 | Autor: | pelzig |
> Wie gesagt, bei meinem Problem kam eine Funktion t(x) für
> alle [mm]x\not=y[/mm] und t(y)=0 vor, in der obiger Ausdruck
> auftauchte. Jetzt möchte man zeigen, dass t stetig in y
> ist. Es reicht dann, dass der Grenzwert
> [mm]\limes_{x\rightarrow y} \bruch{x-y}{\parallel x-y\parallel}[/mm]
> existiert. Kann man das annehmen?
Sicher nicht, wähle [mm] $v\ne [/mm] 0$ und betrachte z.B. die beiden Folgen [mm] $a_n:=y+\frac{v}{n\|v\|}$ [/mm] und [mm] $b_n:=y-\frac{v}{n\|v\|}$. [/mm] Beide gehen gegen y, aber die entsprechenden Limites gehen gegen [mm] v/\|v\| [/mm] und [mm] -v/\|v\|.
[/mm]
Wie ich auch oben schon erwäht habe.... die Stelle x=y ist halt die einzige Unstetigkeitsstelle.
Gruß, Robert
|
|
|
|
|
Also dann geb ich jetzt mal die eine Funtion an. Es gilt:
[mm] t(x):=\partial g(f(x_0))r(x)+s(f(x)) \parallel \partial f(x_0) \bruch{x-x_0}{\parallel x-x_0 \parallel}+r(x)\parallel [/mm] für [mm] x\not=x_0 [/mm] und [mm] t(x_0):=0. [/mm] Außerdem gilt: [mm] f(x_0)=y_0, r(x_0)=0 [/mm] und [mm] s(x_0)=0 [/mm] und f und g differenzierbar in [mm] x_0 [/mm] bzw. [mm] y_0 [/mm] und s und r sind stetig. Warum ist dann t stetig in [mm] x_0 [/mm] bzw. was kann man über [mm] \bruch{x-x_0}{\parallel x-x_0 \parallel} [/mm] aussagen, dass daraus die Stetigkeit von t folgt?
gruß
markus
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:01 Fr 20.03.2009 | Autor: | pelzig |
Wie ich sehe ließt du Amann Escher, ich sehe du hast Geschmack
Jedenfalls ist [mm] $$\left\|\partial f(x_0)\frac{x-x_0}{\|x-x_0\|}\right\|\le\|\partial f(x_0)\|$$ [/mm] (auf der rechten Seite steht die Opeartornorm). Damit ist der Ausdruck [mm] $$\left\|\partial f(x_0)\frac{x-x_0}{\|x-x_0\|}+r(x)\right\|$$ [/mm] wegen der Stetigkeit von r in [mm] $x_0$ [/mm] für [mm] $x\to x_0$ [/mm] beschränkt. Wenn du dich also nur verschrieben hast und in Wirklichkeit meinst [mm] $s(y_0)=0$, [/mm] so ist insgesamt [mm] $\lim_{x\to x_0}t(x)=0$, [/mm] denn der erste Summand [mm] $\partial g(f(x_0))r(x)$ [/mm] geht schön stetig gegen Null.
Gruß, Robert
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:57 Fr 20.03.2009 | Autor: | Marcel |
Hallo Robert,
> ...
> Beide gehen gegen y, aber die entsprechenden Limites gehen
> gegen [mm]v/\|v\|[/mm] und [mm]-v/\|v\|.[/mm]
die Limites gehen eigentlich nirgendwo mehr hin, sie 'sind'!
(Man schreibt ja auch nicht [mm] $\lim_{n \to \infty} a_n \to [/mm] a$, sondern [mm] $\lim_{n \to \infty} a_n=a$.)
[/mm]
Aber man weiß, was Du meinst, das ist die Hauptsache
Gruß,
Marcel
|
|
|
|